Koedinger, K. R., & Corbett, A. (2005). Cognitive Tutors: Technology Bringing Learning Sciences to the Classroom. In R. K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (pp. 61–78). Cambridge University Press. https://doi.org/10.1017/CBO9780511816833.006
Koedinger, K. R., D’Mello, S., McLaughlin, E. A., Pardos, Z. A., & Rosé, C. P. (2015). Data Mining and Education. WIREs Cognitive Science, 6(4), 333–353. https://doi.org/10.1002/wcs.1350
Koedinger, K. R., Stamper, J. C., McLaughlin, E. A., & Nixon, T. (2013). Using Data-Driven Discovery of Better Student Models to Improve Student Learning. In H. C. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Artificial Intelligence in Education (pp. 421–430). Springer. https://doi.org/10.1007/978-3-642-39112-5_43
Kreuter, F., & Peng, R. D. (2014). Extracting Information from Big Data: Issues of Measurement, Inference and Linkage. In H. Nissenbaum, J. Lane, S. Bender, & V. Stodden (Eds.), Privacy, Big Data, and the Public Good: Frameworks for Engagement (pp. 257–275). Cambridge University Press. https://doi.org/10.1017/CBO9781107590205.016
Krumm, A. E., & Beattie, R. (2017). Strategies for Making Digital Learning System Data Usable: A Design Workshop Approach. AERA Anual Meeting, San Antonio, TX.
Krumm, A. E., Yeager, D. S., & Yamada, H. (2019). Explanatory and Predictive Modeling Within Improvement Science Projects. AERA Annual Meeting, Toronto, ON. http://tinyurl.com/yaxj9my4
Krumm, Andrew E. “Measuring Learning Behaviors Using Data from a Digital Learning Environment.” National Council on Measurement in Education Annual Meeting, San Francisco, CA, 2020.
Krumm, A. E., Beattie, R., Takahashi, S., D’Angelo, C., Feng, M., & Cheng, B. (2016). Practical Measurement and Productive Persistence: Strategies for Using Digital Learning System Data to Drive Improvement. Journal of Learning Analytics, 3(2), Article 2. https://doi.org/10.18608/jla.2016.32.6
Krumm, A. E., Boyce, J., & Everson, H. T. (2021). A Collaborative Approach to Sharing Learner Event Data. Journal of Learning Analytics, 8(2), Article 2. https://doi.org/10.18608/jla.2021.7375
Liu, R., & Koedinger, K. R. (2017). Closing the Loop: Automated Data-Driven Cognitive Model Discoveries Lead to Improved Instruction and Learning Gains. Journal of Educational Data Mining, 9(1), Article 1. https://doi.org/10.5281/zenodo.3554625
Liu, R., Stamper, J. C., & Davenport, J. (2018). A Novel Method for the In-Depth Multimodal Analysis of Student Learning Trajectories in Intelligent Tutoring Systems. Journal of Learning Analytics, 5(1), Article 1. https://doi.org/10.18608/jla.2018.51.4
Means, B. (2018). Tinkering Toward a Learning Utopia: Implementing Learning Engineering. In C. Dede, J. Richards, & B. Saxberg (Eds.), Learning Engineering for Online Education. Routledge.
Meyer, A., Grunow, A., & Krumm, A. E. (2017). Are these Changes an Improvement? Using Measures to Inform Homework Practices. AERA Annual Meeting, San Antonio, TX.
Dede, C. (2015). Data-Intensive Research in Education: Current Work and Next Steps. Computing Research Association. https://cra.org/wp-content/uploads/2015/10/CRAEducationReport2015.pdf
Nelson, I. A., London, R. A., & Strobel, K. R. (2015). Reinventing the Role of the University Researcher. Educational Researcher, 44(1), 17–26. https://doi.org/10.3102/0013189X15570387
Paquette, L., Ocumpaugh, J., Li, Z., Andres, A., & Baker, R. (2020). Who’s Learning? Using Demographics in EDM Research. Journal of Educational Data Mining, 12(3), Article 3. https://doi.org/10.5281/zenodo.4143612
Piety, P. J. (2019). Components, Infrastructures, and Capacity: The Quest for the Impact of Actionable Data Use on P–20 Educator Practice. Review of Research in Education, 43(1), 394–421. https://doi.org/10.3102/0091732X18821116
Piety, P. J., Hickey, D. T., & Bishop, M. J. (2014). Educational data sciences: Framing emergent practices for analytics of learning, organizations, and systems. Proceedings of the Fourth International Conference on Learning Analytics And Knowledge, 193–202. https://doi.org/10.1145/2567574.2567582
Piety, P. J., & Pea, R. D. (2018). Understanding Learning Analytics Across Practices. In D. Niemi, R. D. Pea, B. Saxberg, & R. E. Clark (Eds.), Learning Analytics in Education (pp. 215–232). IAP.
Reardon, S. F. (2019). Educational Opportunity in Early and Middle Childhood: Using Full Population Administrative Data to Study Variation by Place and Age. RSF: The Russell Sage Foundation Journal of the Social Sciences, 5(2), 40–68. https://doi.org/10.7758/rsf.2019.5.2.03
Roschelle, J., Knudsen, J., & Hegedus, S. (2010). From New Technological Infrastructures to Curricular Activity Systems: Advanced Designs for Teaching and Learning. In M. J. Jacobson & P. Reimann (Eds.), Designs for Learning Environments of the Future: International Perspectives from the Learning Sciences (pp. 233–262). Springer US. https://doi.org/10.1007/978-0-387-88279-6_9
Luckin, R., Hansen, C., Wasson, B., Clark, W., Avramides, K., Hunter, J., & Oliver, M. (2015). Teacher Inquiry into Students’ Learning: Researching Pedagogical Innovations. In P. Reimann, S. Bull, M. Kickmeier-Rust, R. Vatrapu, & B. Wasson (Eds.), Measuring and Visualizing Learning in the Information-Rich Classroom. Routledge.
Scoville, R., & Little, K. (2014). Comparing Lean and Quality Improvement [White Paper]. Institute for Healthcare Improvement (IHI). https://www.ihi.org:443/resources/Pages/IHIWhitePapers/ComparingLeanandQualityImprovement.aspx
Sendak, M. P., Balu, S., & Schulman, K. A. (2017). Barriers to Achieving Economies of Scale in Analysis of EHR Data. Applied Clinical Informatics, 08(03), 826–831. https://doi.org/10.4338/ACI-2017-03-CR-0046
Shah, N. H., Milstein, A., & Bagley, P., Steven C. (2019). Making Machine Learning Models Clinically Useful. JAMA, 322(14), 1351–1352. https://doi.org/10.1001/jama.2019.10306
Stamper, J. C., & Koedinger, K. R. (2011). Human-Machine Student Model Discovery and Improvement Using DataShop. In G. Biswas, S. Bull, J. Kay, & A. Mitrovic (Eds.), Artificial Intelligence in Education (pp. 353–360). Springer. https://doi.org/10.1007/978-3-642-21869-9_46
Star, S. L. (2010). This is Not a Boundary Object: Reflections on the Origin of a Concept. Science, Technology, & Human Values, 35(5), 601–617. https://doi.org/10.1177/0162243910377624
Star, S. L., & Griesemer, J. R. (1989). Institutional Ecology, `Translations’ and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum of Vertebrate Zoology, 1907-39. Social Studies of Science, 19(3), 387–420. https://doi.org/10.1177/030631289019003001
Suresh, H., & Guttag, J. V. (2021). A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle. Equity and Access in Algorithms, Mechanisms, and Optimization, 1–9. https://doi.org/10.1145/3465416.3483305
Walonoski, J. A., & Heffernan, N. T. (2006). Prevention of Off-Task Gaming Behavior in Intelligent Tutoring Systems. In M. Ikeda, K. D. Ashley, & T.-W. Chan (Eds.), Intelligent Tutoring Systems (pp. 722–724). Springer. https://doi.org/10.1007/11774303_80
Winne, P. H. (2020). Construct and Consequential Validity for Learning Analytics Based on Trace Data. Computers in Human Behavior, 112, 106457. https://doi.org/10.1016/j.chb.2020.106457
Woo, S. E., Tay, L., Jebb, A. T., Ford, M. T., & Kern, M. L. (2020). Big Data for Enhancing Measurement Quality. In S. E. Woo, L. Tay, & R. W. Proctor (Eds.), Big Data in Psychological Research (pp. 59–85). American Psychological Association. https://doi.org/10.1037/0000193-004
Yarkoni, T., & Westfall, J. (2017). Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspectives on Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/1745691617693393
Zheng, G., Fancsali, S. E., Ritter, S., & Berman, S. (2019). Using Instruction-Embedded Formative Assessment to Predict State Summative Test Scores and Achievement Levels in Mathematics. Journal of Learning Analytics, 6(2), Article 2. https://doi.org/10.18608/jla.2019.62.11