Skip to main content

Centrality and Network Flow

Item

Title
Centrality and Network Flow
Abstract/Description
Centrality measures, or at least popular interpretations of these measures, make implicit assumptions about the manner in which traffic flows through a network. For example, some measures count only geodesic paths, apparently assuming that whatever flows through the network only moves along the shortest possible paths. This paper lays out a typology of network flows based on two dimensions of variation, namely the kinds of trajectories that traffic may follow (geodesics, paths, trails, or walks) and the method of spread (broadcast, serial replication, or transfer). Measures of centrality are then matched to the kinds of flows that they are appropriate for. Simulations are used to examine the relationship between type of flow and the differential importance of nodes with respect to key measurements such as speed of reception of traffic and frequency of receiving traffic. It is shown that the off-the-shelf formulas for centrality measures are fully applicable only for the specific flow processes they are designed for, and that when they are applied to other flow processes they get the “wrong” answer. It is noted that the most commonly used centrality measures are not appropriate for most of the flows we are routinely interested in. A key claim made in this paper is that centrality measures can be regarded as generating expected values for certain kinds of node outcomes (such as speed and frequency of reception) given implicit models of how traffic flows, and that this provides a new and useful way of thinking about centrality.
Author/creator
Date
2005
In publication
Social Networks
Volume
27
Issue
1
Pages
55-71
Language
en
ISSN
0378-8733
Abbreviation
Social Networks

Export

Comments

No comment yet! Be the first to add one!

I agree with terms of use and I accept to free my contribution under the licence CC BY-SA.

New Tags

I agree with terms of use and I accept to free my contribution under the licence CC BY-SA.